Modelos preditivos podem perder o foco. Aqui está como mantê-los no caminho certo.

A inércia algorítmica pode resultar em orientações que levam as empresas ao erro. Isso ocorre quando os algoritmos não são atualizados para levar em conta as mudanças no ambiente, então eles fornecem previsões de baixa qualidade.

Modelos de IA projetados para contabilizar dinamicamente novas circunstâncias nem sempre o fazem de forma eficaz. Esse cenário, chamado inércia algorítmica, pode resultar em orientações inadequadas e decisões falhas.

Os autores exploraram as causas e consequências da inércia algorítmica investigando a agência de classificação de crédito Moody’s e seu uso de modelos algorítmicos para classificar títulos lastreados em hipotecas nos anos que antecederam a crise financeira de 2008.

Eles descobriram que os fatores mais significativos que contribuem para a inércia algorítmica são as suposições enterradas, remodelagem superficial, simulação do futuro desconhecido e compartimentalização especializada.

Expor dados e suposições e redesenhar periodicamente rotinas algorítmicas são duas práticas-chave para evitar essa inércia.  Continuar lendo Modelos preditivos podem perder o foco. Aqui está como mantê-los no caminho certo.

Os grandes modelos de linguagem realmente mudarão a forma como o trabalho é realizado?

Mesmo quando as organizações adotam LLMs cada vez mais poderosos, elas terão dificuldade em abandonar sua dependência dos humanos.

Os modelos de linguagem grandes (LLMs, na sigla em inglês de Large Language Models) são de fato uma inovação que está mudando o paradigma da ciência de dados. Eles ampliam as capacidades dos modelos de aprendizado de máquina para gerar texto e imagens relevantes em resposta a uma ampla gama de estímulos qualitativos. Embora essas ferramentas sejam caras e difíceis de construir, uma multidão de usuários pode usá-las rapidamente e de forma econômica para realizar algumas das tarefas baseadas em linguagem que só os humanos poderiam fazer antes.  Continuar lendo Os grandes modelos de linguagem realmente mudarão a forma como o trabalho é realizado?

Bancos e empresas precisam repensar como abordar a Inovação

Inovação! – esse é um grito de guerra comum na era do Vale do Silício, das fintechs e das startups de tecnologia ágil. Certamente a indústria bancária não está excluída dessa narrativa.

As fintechs estão cada vez mais populares, com seus serviços sob demanda, especialmente para aqueles tradicionalmente subatendidos pelos bancos tradicionais. O número crescente e a variedade dos bancos desafiadores, muitas vezes com capacidades bancárias 24 horas por dia, oferecem um contraponto atraente aos bancos físicos. A pressão está aumentando sobre eles. No entanto, a Inovação não é tão fácil quanto apertar um simples botão ou criar um app.  Continuar lendo Bancos e empresas precisam repensar como abordar a Inovação

Artigos traduzidos do jornal Harvard Business Review

Confira abaixo os artigos traduzidos e publicados no jornal da Universidade de Harvard, o renomado periódico bimestral Harvard Business Review:

HBR edição de Maio – Junho de 2024:

A arte de fazer perguntas mais inteligentes

A CEO e fundadora da Praava Health fala sobre sistemas de saúde em um mercado emergente

Para obter sucesso com a IA, é necessário envolver todos

Como marcas inclusivas impulsionam o crescimento

O novo papel do RH

Transformações que funcionam

Profissionais altamente qualificados desejam seu trabalho, mas não seu emprego

Conselhos para colaboradores desmotivados

HBR edição de Março – Abril de 2024:

Não deixe que a Inteligência Artificial Generativa limite a criatividade da sua equipe

Qual deve ser a velocidade ideal de crescimento da sua empresa?

Criar um sistema para crescer de forma consistente

Como ter sucesso em uma era de volatilidade

O presidente da Honeywell fala sobre trazer um negócio industrial para a era digital

Trazendo valores humanos para a IA

OML: Como o machine learning transformará a Gestão da Cadeia de Suprimentos

HBR edição de Janeiro – Fevereiro de 2024:

Liderando no fluxo do trabalho

Os líderes devem reagir

Por que a liderança em tempo real é tão difícil

O CEO do Grupo Gérard Bertrand fala sobre a evolução de uma empresa familiar de vinhos para se tornar uma marca global

Trazendo valores humanos para a Inteligência Artificial

Continuar lendo Artigos traduzidos do jornal Harvard Business Review

Um guia passo a passo para precificação em tempo real

Para os varejistas digitais, a capacidade de revisar preços rapidamente e em grande escala surgiu como um diferenciador decisivo, especialmente durante períodos de inflação, quando os preços flutuam com mais frequência.

O problema

A capacidade de usar IA para mudar preços frequentemente online e em lojas físicas tornou-se crítica para competir no varejo. Mas até mesmo varejistas que construíram tais modelos computacionais adotam uma abordagem excessivamente limitada.

O que os varejistas fazem de errado

Eles tentam igualar ou reduzir os seus preços sem levar em conta se os rivais estão sem estoque ou outros fatores que influenciam as decisões de compra dos consumidores.

A solução

Construa e implemente modelos computacionais que analisem dados históricos de vendas, capturem padrões cruciais e considerem não apenas a precificação dos concorrentes, mas também a disponibilidade de produtos e o comportamento do cliente para recomendar preços ideais em tempo real.  Continuar lendo Um guia passo a passo para precificação em tempo real

Ajudando os funcionários a terem sucesso com a IA Generativa

Como gerenciar o desempenho quando a nova tecnologia traz mudanças constantes e imprevisíveis. Se existisse uma lei universal sobre a adoção de novas tecnologias, seria esta: as pessoas usarão ferramentas digitais de maneiras que você não pode prever ou controlar totalmente.

A chegada de tecnologias baseadas em IA generativa, usando grandes modelos de linguagem (LLMs) como o ChatGPT e o Google Bard, levanta uma questão crítica para os líderes de todos os tipos de organizações: como você pode gerenciar funcionários quando as capacidades ao alcance deles estão em constante mudança e os efeitos dessas mudanças são imprevisíveis?  Continuar lendo Ajudando os funcionários a terem sucesso com a IA Generativa

Como Capitalizar na IA Generativa

Um guia para aproveitar seus benefícios enquanto limita seus riscos

O dilema:

Sistemas iniciais de IA generativa têm um enorme potencial, mas também são propensos a fabricar respostas, invadir a privacidade e violar direitos de propriedade intelectual. Dado os riscos, os líderes estão corretos ao adotar uma atitude de espera?

Por que mergulhar nessa tecnologia?

Essa nova tecnologia é semelhante à máquina a vapor, eletricidade e internet, mas com uma grande diferença: enquanto aquelas tecnologias de uso geral levaram décadas para ter um impacto significativo na concorrência e na economia, a IA generativa o fará em poucos anos.

Como proceder?

  • Faça um inventário dos seus trabalhos de conhecimento.
  • Identifique quais desses papéis se beneficiariam mais da assistência da tecnologia.
  • Priorize projetos cujo ratio de benefícios para custos seja o maior.
  • Aproveite as maneiras disponíveis de reduzir os riscos da IA generativa.
  • Use a abordagem ágil para desenvolver aplicações.

Continuar lendo Como Capitalizar na IA Generativa

Para obter sucesso com a IA, é necessário envolver todos.

Resumo do artigo

O problema

Quando os funcionários são excluídos do processo de adoção de ferramentas de Inteligência Artificial, eles se tornam avessos a trabalhar com IA, nunca desenvolvem confiança em suas capacidades e resistem até mesmo às mudanças positivas que surgem ao utilizá-la.

A causa

Oitenta por cento das organizações afirmam que seu principal objetivo tecnológico é a hiperautomação – a automação completa de ponta a ponta de tantos processos de negócios quanto possível. Executivos muitas vezes buscam esse objetivo sem feedback dos funcionários – as pessoas cujos empregos e vidas serão mais afetados por alcançá-lo.

A solução

A transformação do modelo operacional da empresa usando Inteligência Artificial requer uma conexão humana constante entre diversas disciplinas de negócios. Incluir funcionários de nível básico em projetos de IA tornará mais provável a melhoria do desempenho a longo prazo – e seus funcionários mais propensos a serem felizes, produtivos e engajados.

Continuar lendo Para obter sucesso com a IA, é necessário envolver todos.

Não deixe que a Inteligência Artificial Generativa limite a criatividade da sua equipe.

Trate-a como uma parceira em uma conversa estruturada.

Ninguém duvida da capacidade do ChatGPT de gerar muitas ideias. Mas essas ideias são boas? Em um experimento recente no mundo real, equipes envolvidas em uma tarefa de solução criativa de problemas viram ganhos modestos com a assistência da IA na maioria das vezes — e algumas tiveram desempenho abaixo do esperado. Não culpe a tecnologia, diz Kian Gohar, CEO da empresa de desenvolvimento de liderança GeoLab e um dos autores do estudo.
Conceitos equivocados comuns sobre IA generativa, resolução de problemas e o processo criativo estão fazendo com que trabalhadores e seus gerentes usem as ferramentas de maneira inadequada, às vezes deixando-os em situação pior do que se tivessem prosseguido sem o input da IA.  Continuar lendo Não deixe que a Inteligência Artificial Generativa limite a criatividade da sua equipe.